
V6Gene: A Scalable IPv6 Prefix Generator for Route Lookup Algorithm
Benchmark i

Kai Zheng, Bin Liu
Department of Computer Science, Tsinghua University, Beijing, P.R.China 100084

zk01@mails.tsinghua.edu.cn, liub@tsinghua.edu.cn

Abstract
Most conventional IPv4-based route lookup

algorithms are no more suitable for IPv6 packet
forwarding due to the significantly increased
128-bit-long address. However, as a result of lacking
of standard IPv6 route databases, it is hard to make
benchmarks for the new generation IPv6-based
algorithms developing/evaluation. In this paper, based
on the studies of initial IPv6 prefix distributions and
the associated RFC documents, we originally develop
a scalable IPv6 prefix generator, called V6Gene, for
IPv6-based route lookup algorithms benchmarking.
According to the RFCs and other associated standards,
V6Gene generates IPv6 route prefixes from the
initially assigned LIR (Local Internet Registries)
prefixes collected from the real world, simulating the
process of future IPv6 address block allocation from
the LIRs to their subscribers. V6Gene is totally flexible
for generation of all kinds of route databases with
different characteristics. It is simple for
implementation and can be easily integrated within
other IPv6 benchmark tools/systems.

V6Gene is publicly available at
http://zheng_kai.home4u.china.com/V6Gen.htm.

1. Introductioni

With the rapid development of the Internet
applications and the explosion of the end users, the
available IPv4 addresses that can be allocated are
almost exhausted [1]. Though several approaches have
been made to temporally cope with the problem such
as NAT (Network Address Translation), however due
to its drawbacks of not well supporting peer-to-peer
applications and with other security problems, it is
widely/publicly believed that there should be a new
generation of IP protocol to replace IPv4. IP Version
Six (IPv6) then emerge as the times require. It adopts a
128-bit address space, which provides about 296 times
of available addresses more than that of IPv4. Besides

i This work is supported by NSFC (No. 60173009 and 60373007),
China 863 High-tech Plan (No. 2002AA103011-1 and
2003AA115110), China/Ireland Science and Technology
Collaboration Research Fund (CI-2003-02) and the Specialized
Research Fund for the Doctoral Program of Higher Education of
China (No. 20040003048).

that, IPv6 provides very good supports for mobility
and information security as well. It also offers a better
support for QoS-Control than that of its counterpart,
since its packet header is far more flexible and can
contain more detailed information for flow/application
identification.

However, the change of the protocol itself,
especially the distinctively increased 128-bit address,
on the other hand brings quite a lot of un-neglectable
challenges for developing networking infrastructures
based on IPv6. For instance, the performance of
conventional route lookup algorithms (i.e., both
trie-based algorithms [2][3][4][5] and TCAM-based
schemes [6][7][8]) implemented in most current
packet forwarding devices are sensitive to the search
key (i.e., IP address) length, and, therefore, will
distinctively decrease when migrated to IPv6. This
means that a new generation of high performance
route lookup algorithms based on IPv6 should be
developed accordingly.

Yet, the major concern of this paper is not the
research of finding efficient route lookup algorithms
itself, but to develop a scalable benchmarking tool for
such algorithms developments. Notice that in order to
develop a high performance and suitable route lookup
algorithm for next generation high speed packet
processing, one should first inspect the route databases
and make use of the characteristics of the distribution,
and then use the standard route databases for
benchmark and evaluate the corresponding
performance, as what most researchers have done
when they developed IPv4 route lookup algorithms
[3][4][5][6][7][8].

However, due to the following three reasons, almost
no real-world route databases can be utilized for
IPv6-based algorithm benchmark currently: 1) Since
IPv6 is in its initiation period, only a small portion of
address blocks are assigned/allocated up to now; 2)
The currently assigned blocks are mostly LIRs (Local
Internet Registries, or Large ISPs) level blocks, which
means that the current IPv6 prefix distribution should
be quite different with its future pattern which contain
mainly end subscriber level address blocks; 3) Most
nowadays IPv6 based networking are for testing or

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

experiment purposes. Therefore, on the one hand
relatively few organizations provide their IPv6 route
databases for research, and on the other hand, though
some of them share their route databases [10][12], the
prefixes in such IPv6 route tables are somehow local,
i.e., without universality for research purpose, such as
benchmarking. So, providing artificially generated
IPv6 route prefix database with public availability,
reliability and universality are, therefore, very
essential for the new generation route lookup
algorithm benchmarking.

D.E.Taylor developed a policy rules generation tool,
called ClassBench [19], for packet classification
benchmarking. The basic observation is that although
the real-world rule databases are always not publicly
available due to security and confidentiality issues, the
rule databases owners may just provide the
corresponding profiles, called seed-files, of their rule
sets instead of the confidential database. And then,
based on such seed-files, the researchers may use
ClassBench to re-generate similar rule set for
benchmarking of classification algorithm
development.

In light of the idea of ClassBench, in this paper, by
thoroughly studies on large amount of associated
RFCs and other standards for IPv6, and analysis on the
characteristics of both current IPv4 prefix distribution
and IPv6 initial prefix distribution, we develop a
scalable IPv6 prefix generator, called V6Gene for
route lookup algorithm benchmarking. V6Gene
simulates the process of IPv6 addresses allocation
from LIRs to their end users. IPv6 route prefixes are
generated from real-world LIR level prefixes (i.e. the
LIR level prefixes are treated as seed-prefixes),
according to the configuration setup by the users.
V6Gene is totally flexible and can be easily utilized in
other IPv6 based integrated test bed or benchmark
systems.

2. Definitions and Terms
2.1 Trie, Prefix Node, Internal Node, Prefix Leaf

A Binary Trie is introduced to represent the prefix
space, with each node for a possible prefix. The prefix
of a route table entry defines a path in the trie ending
in some node, which is called the Prefix Nodes in this
paper. If a node itself is not a prefix node but its
descendants include prefix nodes, we call it an
Internal Node. We name a prefix node as a Prefix Leaf
if it has no descendants prefix nodes. Fig.1 depicts an
example of the definitions introduced above. For
simplicity we suppose that the address length is 7bits.

2.2 Prefix Depth and Prefix Level
Depth of a prefix (node) is defined as the number of

its ancestor nodes in the prefix trie, and Depth(i) of the
prefix trie denotes the set of all prefixes (node) with
their depths equals i. Depth of a prefix node is actually
the same of the length of the corresponding route
prefix. For instance, in the example of Fig.1 the depths
of prefix node A, D, and F are 0,4, and 6 respectively.

For a given prefix node n, there may be multi paths
from n to its multi descendant leaf nodes. Among these
paths, let Pmax be the one containing the most prefix
nodes. The number of prefix nodes (excluding node n
itself) in Pmax is called the Prefix Level of prefix node
n. And |Level(i)| denotes the number of prefixes (nodes)
with their level equals i. It is actually a parameter
representing the level of a specific subnet hierarchy. In
the example of Fig.1 the level of prefix node A, D and
F are 2, 0 and 1 respectively. And |Level(0)|=6,
|Level(1)|=2, and |Level(2)|=1 .

2.3 RGR and GAT
2.3.1 Random Generating Ratio (RGR).

The prefix generation is a random process. As will
be introduced in the latter sections, general speaking,
the generator random generates IPv6 prefixes from
specific seed prefixes collected from real world,
simulating the process of IPv6 address block
assignments, e.g., from the LIRs to small subscribers.
However notice that prefixes may also be allocated
from certain newly assigned LIRs, so we also need to
generate certain amount of IPv6 prefixes without
regarding to the seed prefix file. To make the generator
flexible, we introduce the parameter RGR: RGR is
defined as the ratio of the number of prefixes to be
generated without regarding to the seed prefix file to
the number of all prefixes to be generated. RGR
represents the degree of relation of the generated
prefix table to the seed table.
2.3.2 Generation Accuracy Tolerance (GAT).

GAT is a vector, each sub-value of which is
defined as the tolerance of variance between a specific
parameter of generated route table and the one setup
by the user. The generation outcomes should satisfy all
constrains iiii PSPSPGGAT /|| −≤ , where iPG
represents each of the parameters of the generated
table, iPG represents each of the parameters setup by
the user. Such parameters include the number of
prefixes to generate, the number of total next hop IP
addresses in the table, etc. The reason of introducing
GAT is that the generated outcome should satisfy more
than one constrains setup by the user. Note that some
of them may conflict with each others, so it can not be
guaranteed that all parameters be achieved, exactly.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Fig 1. An example routing table and the corresponding binary trie built from it.

3. Features of Route Prefix Distributions
3.1 Real-world IPv4 Prefix Distribution

Study on IPv4 prefix distribution should be very
helpful in estimating future IPv6 characteristics,
because of two main considerations: 1) The topology
of the Internet should not be largely altered during the
migration from IPv4 to IPv6; 2) There are many things
in common of IPv4 and IPv6 address block
allocation/assignment. In what follows, we provide
some observation on real-world IPv4 prefix
distributions. In order to ensures that the
characteristics discussed here are not specific to
particular routers or time interval, we pick four typical
route tables collected from four famous route service
projects [9][11][13][14], which are both spatially and
temporally widely distributed, as described in Table I.
TABLE 1. Four real-world route tables.

Name of Data
Base

Date Number of
Prefixes

Number of
Next Hop

Mae-West [13] 2001-03 33,960 45
SD_NAP [14] 2001-06 3,935 2
Route View [9] 2003-10 123,384 4

RRC06 [11] 2003-11 131,372 35

3.1.1 Distribution on Prefix Lengths and Depths
As is shown in Fig. 2 (note the logarithmic scale on

the y-axis), despite the elapse of time, the prefix length
distributions keep a relatively stable form: The
historical 24-bit Class C Prefix still dominates the
number of entries (about 50% alone); the ratio of
prefixes longer than 24-bit is very tiny (less than 1% in
each of the four cases); over 90% of the prefixes are
between 18-bit and 24-bit.

3.1.2 Distribution on Prefix Level
Fig.3 depicts the distribution on prefix level. We

can see that the ratio of prefix population decreases

logarithmically with the growth of prefix level (note
the logarithmic scale on the y-axis). Most real-world
IPv4 route databases are with only five to six prefix
levels and the majority (e.g., over 90%) of the prefixes
are in Level 0 (i.e., they are prefix leaves).

Fig 2. Prefix distributions on prefix length. Please note the
logarithmic scale on the y-axis. We find that the distribution is

extremely uneven across the scope of prefix length and intervals.

Fig 3. Prefix distributions on prefix level.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

3.2 IPv6 Prefix Characteristics
As is mentioned before, IPv6’s being in its initiation

period leads to the relatively few number of available
prefix databases that can be utilized for study [1]. And
its current distribution should be quite different from its
future patterns, according to our studies on the RFCs
and other associated documents. In this sub-section, we
first introduce the initial IPv6 prefix distribution
characteristics, and then through a thorough survey of
the associated RFCs [15-18] and RIPE documents [1],
we estimate the “future-like” IPv6 prefix distribution
and come to some useful conclusions for developing
the IPv6 prefix generator.

3.2.1 Current (initial) IPv6 prefix distribution.

Fig. 4(a) depicts the IPv6 prefix distribution on
prefix length of a real-world IPv6 global route table
(Route-View IPv6 route table, Data: 2004-10-3, Size:
680 Prefixesii. [10]). We can see that the majority are
‘/32’ prefixes, which is referred to as the "initial IPv6
allocation blocks" [1]. As mentioned in [1], this kind
of IPv6 address blocks are allocated to the LIRs who:
1) plan to provide IPv6 connectivity to organizations
to which it will assign '/48's by advertising that
connectivity through its single aggregated address
allocation; 2) have a plan for making at least 200 ‘/48’
assignments to other organizations within two years
(the last information is essential for the IPv6 prefix
generation, which will be introduced shortly). Some
even shorter prefixes (length from 16-31) were
assigned to high-level subscribers according to RFC
2374[15] before it was replaced by RFC 3587 [18]. In
RFC 2374 and RFC 2928 [16], IPv6 address blocks
were organized in a complex aggregatable hierarchy
which includes the TLA (Top Level Aggregation) ‘/16’
blocks, sub-TLA blocks, NLA (Next Level
Aggregation) ‘/48’ blocks, SLA (Site Level
Aggregation) ‘/64’ blocks and the Interface Level
address ('/128').

Fig.4(b) depicts the IPv6 prefix distribution on
prefix level, where is very similar to the cases of IPv4.
And we can see that there are only four prefix levels
(i.e., subnet levels). This information will be useful for
V6Gene: A specific seed prefix may have only 2-3
levels of children prefixes.

3.2.2 Future IPv6 prefix distribution estimation
 RFC 3578 (up-to-dated) replaces RFC 2374 and
simplifies the aggregatable IPv6 address hierarchy.

ii There are totally 6700 prefixes in the original database, however,
only 680 of them are unique (since the database may contain
identical route prefix announced by different source routers).

Now there are only three levels of prefixes: the Global
Routing Prefix (4-48thbits. Note that the 1-3thbits of
IPv6 unicast address should be ‘001’), the Subnet ID
(49-64th bits) and the Interface ID (65-128thbits).

(a) On Length

 (b) On Level

Fig 4. Real-world (Initial) IPv6 prefix distribution. Please note the
logarithmic scale on the y-axis.

 According to RFC 3177 (IAB/IESG
recommendation on IPv6 address allocation to sites)
[17] and RIPE 267 [1], the IPv6 address blocks should
be allocated to subscribes following these rules: 1)
‘/48’ in the general case, except for very large
subscribes, which could receive a ‘/47’ or multiple
‘/48s’; 2) ‘/64’ when it is known that one and only one
subnet is needed by design; 3) ‘/128’ when it is
ABSOLUTELY known that one and only one device is
connecting. Also defined by RFC 3177, "the middle 16
bits (i.e., 49-64th bit) of an address indicate the subnet
ID", since "the operational benefits of a consistent
width subnet field were deemed to be outweigh the
drawbacks" [1]. This shows that a standard '/48s'
address block can be 'subnetted' into at most 16 levels,
indicating the subnet/prefix levels of practical IPv6
route table will not be large. Note that there are even
more subnet levels under the CIDR IPv4 address
allocation scheme, where the subnet ID may cover
from the 9th to 30th bit of the address.
 From the related recommendation of RFCs and

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

RIPE documents introduced above, we come to some
useful conclusions as follows, which may be very
useful for developing the prefix generator or making a
decision of parameter setup:

i. It is obvious but important that there is no prefix
with length between 64bit and 128bit (excluding 64bit
and 128bit).

ii. The majority of the prefixes should be the ‘/48s’,
and ‘/64s’ the secondary majority. Other prefixes
would be distinctly fewer than the ‘/48s’ and ‘/64s’.
 iii. Future (or the near future) IPv6 address blocks
will be allocated to common subscribers mainly from
the current assigned LIRs. This is essential for IPv6
prefix generating.
 iv. Though the address length is increase, the levels
of subnet/prefix would not be distinctively scaled (e.g.
only 4-5 levels), due to consistent width subnet field.

4. V6Gene: The IPv6 Prefix Generator
4.1 The Overall Processing Flow of V6Gene

Fig. 5 depicts the processing flow of V6Gene.
Generally speaking, the generating process is actually
a simulation of the IP address block allocation process:
Remember that most prefixes within the seed prefix
set are LIR address blocks, so to allocate new address
blocks from the LIRs to their subscribers can be
regarded as to generate prefixes from the LIRs/seed
prefixes. Given the number of prefixes to be generate,
the distribution on prefix length/level and the GAT
allowed, the program run iteratively as the alteration
of generation and modification, until the constrains are
all satisfied.Notice that part of the prefixes is
generated randomly, which means they are generation
without regarding the seed file. A mergence of the two
outcomes should be employed, including a process to
remove the redundant/invalid prefixes.

4.2 Details of V6Gene
4.2.1 Initiation

In this step, V6Gene will read in all the
configurations, including all the associated parameters
(i.e., number of prefixes, number of distinct next-hop,
and RAR), distribution objectives (i.e., distributions on
prefix length and prefix level), generating constrains
(i.e., GAT), and the seed prefix file. Then V6Gene will
first check the seed database and prune the
invalid/redundant information (i.e., only keep the
unique LIR prefixes), for instance as mentioned before,
the seed prefix database collected from certain
providers may contain identical prefixes announced by
different sources. After that, based on the seed file,
V6Gene will construct a binary trie, called the Seed

Prefix Trie (SPT), which will be utilized in the later
steps.
4.2.2 Generating

In this step, V6Gene will simulate the IPv6 block
allocation process, which includes two parallel phases:

One is the simulation of address blocks allocation
from the LIRs to the ordinary subscribers. V6Gene
traverse the SPT: whenever come to a seed prefix leaf,
it will trigger the generation function. This function
generates a specific number of prefixes (indicated by
the parameter RGR) according to the given
distribution on prefix length and prefix levels; all the
generated prefixes should have a same prefix, i.e., the
seed prefix. Then the function will randomly assign
forwarding information to each prefix generated. Such
information includes the forwarding output port#, next
hop IP addresses, and so on.

The other phase is the random generation, which is
actually to simulate the process of IPv6 block
allocation from new LIRs (which do not currently
exist) to their subscribers. In this phase, a specific
number of prefixes (indicated by the parameter RGR)
will be generated without regarding to the seed prefix
file. Two sub-steps are included: First to randomly
generate LIR level prefixes, and then to generate
subscriber level prefix from them.

As mention before, a verification of the outcomes
will be deployed after the generations, to make sure
that all the prefixes are unique and with proper
forwarding information. It is obvious that some of the
generated prefixes may be removed in the verification
process, and this may lead to dissatisfaction of certain
constrains, such as the number of prefixes, etc. So
another task of the random generation phase is to
make up for such dissatisfaction by additionally
generating a number of prefixes. In V6Gene,
generation, verification and adjustment are triggered
iteratively, until all constrains are well satisfied.
4.2.3 Outputting
 In this step, V6Gene will collect all the generated
results and output them in compatible format (with the
seed prefix file, e.g., the Route-View format [10]).
4.3 Some Discussions
1) V6Gene is totally flexible and scalable. Given
different seed prefix sets, or configured with different
distributions or constrains, it can generate route prefix
table with different scale or for different applications.
2) For target distribution setup, the user may refer to
those collected from the IPv4 real-world databases and
estimated according to the RFCs. They may also
create their specific target distribution.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

Fig 5. The processing flow of the prefix generator.

3) We implement V6Gene on a 1.8GHz Intel Pentium
IV-m laptop. The result shows that it takes only a few
(<10) seconds to generate (and verify) over 130,000
IPv6 prefixes. This indicates that the iteration within
the process converges fast.
4) All the inputs and outputs (i.e., interface) of
V6Gene are files, which shows that it can be easily
adopted to collaborate with other algorithm evaluation
tools or integrated within a IPv6 benchmark system.

5. Conclusions
In this paper, based on the studies of real-word

prefix distributions and the associated RFC documents,
we develop a scalable IPv6 prefix generator, called
V6Gene. Due to the insufficiency of available
real-world IPv6 route databases, V6Gene would be
very useful for providing reliable and flexible
benchmark for future IPv6 based application designing.
V6Gene generates IPv6 route prefixes from the LIR
prefixes collected from the real-world, simulating the
process of IPv6 address block allocation from the LIRs
to their subscribers. It is totally scalable, simple for
implementation, and can be easily integrated within
other IPv6 benchmark system.

6. Reference
[1] RIPE 267: APNIC, ARIN, RIPE NCC, “IPv6 Address Allocation
and Assignment Policy”, Document ID: ripe-267, January 2003.
[2] D.R.Morrison, “PATRICIA -- Practical Algorithm to Retrieve
Information Coded in Alphanumeric”, J.ACM, vol. 15, no.4,
Oct.1968, pp. 514-34.
[3] S.Nilsson and G.Karlsson, “IP-Address Lookup Using LC-Tries”,
IEEE Journal on Selected Areas in Communications, VOL. 17, NO.
6, June1999.

[4] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speed”, Proc. of IEEE INFOCOM’98,
San Francisco, April 1998, pp. 1240-1247.
[5] M. Degermark, A. Brodnik, S. Carlsson, S. Pink, “Small
Forwarding Tables for Fast Routing Lookups”, Proc. of
ACM/SIGCOMM’97, Cannes, France, pp. 3-14, Sep. 1997.
[6] H. Liu, “Routing Table Compaction in Ternary CAM”, IEEE
Micro, 22(1):58-64, January-February 2002.
[7] F. Zane, G. Narlikar, A. Basu, “CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines”, Proc. of IEEE INFOCOM’03,
San Francisco,USA.
[8] K. Zheng, C.Hu, H.Lu, and B.Liu, “An Ultra High Throughput
and Power Efficient TCAM-Based IP Lookup Engine”, Proc. of
IEEE INFOCOM, Hong Kong, China, April, 2004.
[9] IPv4 route database from the Route-view Project (University of
Oregon), http://archive.routeviews.org/bgpdata/.
[10] IPv6 route database from the Route-view Project, http://
archive.routeviews.org/route-views6/bgpdata/.
[11] IPv4 route database from the RRCC Project (Routing Registry
Consistency Check Project), http://www.ripe.net/rrcc/.
[12] IPv6 route database from the Chinese CERNET BGP VIEW
Project, http://bgpview.6test.edu.cn/bgp-view/.
[13] IPv4 route database from the IPMA Project (a joint effort of the
University of Michigan and Merit Network),
http://www.merit.edu/ipma.
[14] IPv4 route database of the SD_NAP route server
(sd-nap-dmz.pch.net), http://archive.pch.net/archive/.
[15] RFC 2374: R. Hinden, M. O'Dell, S. Deering. An IPv6
Aggregatable Global Unicast Address Format. July 1998.
[16] RFC 2928: R. Hinden, S. Deering, R. Fink and T. Hain, "Initial
IPv6 Sub-TLA ID Assignments", September 2000.
[17] RFC 3177: IAB, IESG, "IAB/IESG Recommendations on IPv6
Address". September 2001.
[18] RFC 3587: R. Hinden, S. Deering and E. Nordmark, "IPv6
Global Unicast Address Format", August 2003.
[19] D.E. Taylor, J.S. Turner, “ClassBench: A Packet Classification
Benchmark”, Proc. of IEEE INFOCOM , Miami, USA, March 2005.

Proceedings of the 20th International Conference on Advanced Information Networking and Applications (AINA’06)
1550-445X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

